Plot Source Reconstructions#
This module enables 3D plotting of source-reconstructed results, either in individual subject space,
- visualization.plot_src_rec.plot_subj_space(cort_mdl, color_data, signal_type=None, rec_meta_info=None, coreg=None, ch_names=None, title=None)#
Use finnpy’s cortical model to produce a high resolution 3D plot.
- Parameters:
cort_mdl (finnpy.src_rec.cort_mdl.Cort_mdl) –
Container populated with the following items:
- lh_vertnumpy.ndarray, shape(lh_vtx_cnt, 3)
White matter surface model vertices (left hemisphere).
- lh_facesnumpy.ndarray, shape(lh_face_cnt, 3)
White matter surface model faces (left hemisphere).
- lh_valid_vertnumpy.ndarray, shape(lh_vtx_cnt,)
Valid flags for white matter surface model vertices (left hemisphere).
- rh_vertnumpy.ndarray, shape(rh_vtx_cnt, 3)
White matter surface model vertices (right hemisphere).
- rh_facesnumpy.ndarray, shape(rh_face_cnt, 3)
White matter surface model faces (right hemisphere).
- rh_valid_vertnumpy.ndarray, shape(rh_vtx_cnt,)
Valid flags for white matter surface model vertices (right hemisphere).
- octa_model_vertnumpy.ndarray, shape(octa_mdl_vtx_cnt, 3)
Octamodel vertices (left hemisphere).
- octa_model_facesnumpy.ndarray, shape(octa_mdl_face_cnt, 3)
Octamodel faces (right hemisphere).
color_data (numpy.ndarray(valid_vtx_cnt, )) – Scalar values to be plotted at each vortex of the model.
signal_type (str) – ‘EEG’ or ‘MEG’.
rec_meta_info (tuple of (np.ndarray, list or np.ndarray)) –
- eeg_coords or pos_megnp.ndarray, shape(ch_cnt, 3)
Position of the EEG/MEG sensors.
- ws or pos_mri: list or np.ndarray
Either EEG weights or position of the MEG sensor in MRI space.
coreg (finnpy.src_rec.coreg) – Coregistration between MEEG and MRI.
ch_names (list) – Channel names.
title (str) – Title string.
fs-average space (for group analyses),
- visualization.plot_src_rec.plot_fsavg_space(subj_to_fsavg_mdl, color_data, signal_type=None, rec_meta_info=None, coreg=None, ch_names=None)#
Use finnpy’s fsavg model to produce a high resolution 3D plot.
- Parameters:
subj_to_fsavg_mdl (finnpy.src_rec.subj_to_fsavg.Subj_to_fsavg_mdl) –
Container class, populated with the following items:
- transnumpy.ndarray, shape(valid_subj_vtx_cnt, valid_subj_vtx_cnt)
Transformation matrix
- lh_valid_vertnumpy.ndarray, shape(lh_vtx_cnt,)
Valid/supporting vertices for left hemisphere.
- lh_vertnumpy.ndarray, shape(lh_vtx_cnt, 3)
White matter surface model vertices (left hemisphere).
- lh_facesnumpy.ndarray, shape(lh_face_cnt, 3)
White matter surface model faces (left hemisphere).
- rh_vertnumpy.ndarray, shape(rh_vtx_cnt, 3)
White matter surface model vertices (right hemisphere).
- rh_facesnumpy.ndarray, shape(rh_face_cnt, 3)
White matter surface model faces (right hemisphere).
- rh_valid_vertnumpy.ndarray, shape(rh_vtx_cnt,)
Valid flags for white matter surface model vertices (right hemisphere).
- rh_valid_vertnumpy.ndarray, shape(fs_avg_vtx_cnt,)
Valid/supporting vertices for right hemisphere.
color_data (numpy.ndarray(valid_vtx_cnt, )) – Scalar values to be plotted at each vortex of the model.
signal_type (str) – ‘EEG’ or ‘MEG’.
rec_meta_info (tuple of (np.ndarray, list or np.ndarray)) –
- eeg_coords or pos_megnp.ndarray, shape(ch_cnt, 3)
Position of the EEG/MEG sensors.
- ws or pos_mri: list or np.ndarray
Either EEG weights or position of the MEG sensor in MRI space.
coreg (finnpy.src_rec.coreg) – Coregistration between MEEG and MRI.
ch_names (list) – Channel names.
or region-averaged fs-average space.
- visualization.plot_src_rec.plot_reg_avg(subj_to_fsavg_mdl, morphed_channels, color_data, signal_type=None, rec_meta_info=None, coreg=None, ch_names=None)#
Generate a high resolution 3D plot using using Desikan-Killiany parcellation on fs-average projected data.
- Parameters:
subj_to_fsavg_mdl (finnpy.src_rec.subj_to_fsavg.Subj_to_fsavg_mdl) –
Container class, populated with the following items:
- transnumpy.ndarray, shape(valid_subj_vtx_cnt, valid_subj_vtx_cnt)
Transformation matrix
- lh_valid_vertnumpy.ndarray, shape(lh_vtx_cnt,)
Valid/supporting vertices for left hemisphere.
- lh_vertnumpy.ndarray, shape(lh_vtx_cnt, 3)
White matter surface model vertices (left hemisphere).
- lh_facesnumpy.ndarray, shape(lh_face_cnt, 3)
White matter surface model faces (left hemisphere).
- rh_vertnumpy.ndarray, shape(rh_vtx_cnt, 3)
White matter surface model vertices (right hemisphere).
- rh_facesnumpy.ndarray, shape(rh_face_cnt, 3)
White matter surface model faces (right hemisphere).
- rh_valid_vertnumpy.ndarray, shape(rh_vtx_cnt,)
Valid flags for white matter surface model vertices (right hemisphere).
- rh_valid_vertnumpy.ndarray, shape(fs_avg_vtx_cnt,)
Valid/supporting vertices for right hemisphere.
morphed_channels (list(np.ndarray(variable size)), len = valid_vtx_cnt) – Projects from 68 cortical regions onto the vertices of the high resolution MRI scans.
color_data (numpy.ndarray(valid_vtx_cnt, )) – Scalar values to be plotted at each vortex of the model.
signal_type (str) – ‘EEG’ or ‘MEG’.
rec_meta_info (tuple of (np.ndarray, list or np.ndarray)) –
- eeg_coords or pos_megnp.ndarray, shape(ch_cnt, 3)
Position of the EEG/MEG sensors.
- ws or pos_mri: list or np.ndarray
Either EEG weights or position of the MEG sensor in MRI space.
coreg (finnpy.src_rec.coreg) – Coregistration between MEEG and MRI.
ch_names (list) – Channel names.