Boundary element model (BEM)#
This module may be employed to calculate the boundary element model for EEG/MEG source reconstruction.
- src_rec.bem_mdl.BEM_mdl(vert, faces, faces_normal, faces_area, solution)#
Container class.
Create a container with BEM model elements for convenience.
- Parameters:
vert (list of numpy.ndarray, shape(scaled_vtx_cnt, 3)) – Remaining vertices of a skin/skull model vertices.
faces (list of numpy.ndarray, shape(scaled_face_cnt, 3)) – Remaining faces of a skin/skull model faces.
faces_normal (numpy.ndarray, shape(scaled_face_cnt, 3)) – Normals of the individual remaining inner skull faces.
faces_area (numpy.ndarray, shape(scaled_face_cnt)) – Surface area of the remaining faces.
solution (numpy.ndarray, shape(scaled_vtx_cnt, scaled_vtx_cnt)) – BEM solution (preliminary step for the calculation of the forward model).
- src_rec.bem_mdl.INNER_SKULL_IDX#
Index of the inner skull.
- Type:
int
- src_rec.bem_mdl.OUTER_SKULL_IDX#
Index of the outer skull.
- Type:
int
- src_rec.bem_mdl.OUTER_SKIN_IDX#
Index of the skin.
- Type:
int
- src_rec.bem_mdl.run(fs_path, anatomy_path, subj_name, signal_type, coreg, conductivity=None, tgt_icosahedron_level=4)#
Calcuates the BEM linear basis coefficients using the linear collocation method.
- Parameters:
fs_path (string) – Path to the freesurfer directory.
anatomy_path (string) – Path to the anatomy folder. This folder should contain a sub-folder for each subject, to be pupulated with the corresponding structural data.
subj_name (string) – Subject name.
signal_type (string) – Mode is either “EEG” or “MEG”.
coreg (finnpy.src_rec.coreg.Coreg) – Container with different transformation matrices
conductivity ((float,) or (float, float, float)) – Conductivity values for a one layer (MEG) or three layer (EEG) model.
tgt_icosahedron_level (int) – Order of the icosahedron employed herein, defaults to 4.
- Returns:
bem_mdl – Container class, populed with the following items:
- vertlist() of numpy.ndarray, [shape(scaled_vtx_cnt, 3), …]
Remaining vertices of a skin/skull model vertices.
- faceslist() of numpy.ndarray, [shape(scaled_face_cnt, 3), …]
Remaining faces of a skin/skull model faces.
- faces_normalnumpy.ndarray, shape(scaled_face_cnt, 3)
Normals of the individual remaining inner skull faces.
- faces_areanumpy.ndarray, shape(scaled_face_cnt)
Surface area of the remaining faces.
- bem_solutionnumpy.ndarray, shape(scaled_vtx_cnt, scaled_vtx_cnt)
BEM solution (preliminary step for the calculation of the forward model).
- Return type:
finnpy.src_rec.bem_mdl.BEM_mdl
- Raises:
AssertionError – Raised if the number of vertices in the three layer model vary.