Sensor covariance#
This module may be employed to calculate the sensor covariance matrix.
- src_rec.sen_cov.Sen_cov(evals, evecs, ch_names)#
Container class, populed with the following items:
- src_rec.sen_cov.evals#
Eigenvalues.
- Type:
numpy.ndarray, shape(ch_cnt,)
- src_rec.sen_cov.evecs#
Eigenvectors/covariance matrix.
- Type:
numpy.ndarray, shape(ch_cnt,ch_cnt)
- src_rec.sen_cov.ch_names#
Channel names.
- Type:
list, string
- src_rec.sen_cov.run(file_path, cov_path, method=None, float_sz=64, method_params=None, finnpy_speedups_path='../FinnPy_speedups/Release/FinnPy_speedups.so', overwrite=False)#
#Determines eigenvectors/values from the sensor noise covariance
- Parameters:
file_path (string) – The (empty room) file to use for sensor noise covariance calculations. Important: Evaluate a number of different files to identify a good example.
cov_path (string) – Path to a the covariance file. If none exists, the covariance will be saved in this location.
method (string) – Method to be employed, either “empirically”, “shrinkage”, or “factor_analysis” (default: shrinkage).
method_params (dict()) – Method specific parameters. Only applies to sklearn.covariance.ShrunkCovariance and sklearn.decomposition.FactorAnalysis, defaults to “shrinkage” : 0.2 - epoch size in s.
finnpy_speedups_path (string) – Path to the finnpy speedups library
overwrite (boolean) – Flag to overwrite covariance calculation.
- Returns:
sen_cov – Container class.
- Return type:
finnpy.src_rec.sen_cov.Sen_cov
- src_rec.sen_cov.load(cov_path)#
#Determines eigenvectors/values from the sensor noise covariance
- Parameters:
cov_path (string) – Path to a the covariance file. If none exists, the covariance will be saved in this location.
- Returns:
sen_cov – Container class.
- Return type:
finnpy.src_rec.sen_cov.Sen_cov
- src_rec.sen_cov._get_bio_channel_type_idx(raw_file, mask=None)#
Identifies bio channel types.
- Parameters:
raw_file (mne.io.read_raw_fif) – Scanned MRI file.
- Returns:
valid_ch_indices (numpy.ndarray, shape(ch_cnt,)) – Binary list identifying channels as valid/invalid.
meg_ch_indices (list, int) – Indices of magnetometer channels.
grad_ch_indices (list, int) – Indices of gradiometer channels.
ch_names (list, string) – channel names.
- src_rec.sen_cov._empirically_estimate_cov(cov_data, meg_ch_indices, grad_ch_indices, valid_ch_indices)#
Calculates the sensor noise covariance
- Parameters:
cov_data (numpy.ndarray, shape(samples, channels)) – An (empty room) file to use for sensor noise covariance calculations. Important: Evaluate a number of different files to identify a good example.
meg_ch_indices (list, int) – Indices of magnetometer channels.
grad_ch_indices (list, int) – Indices of gradiometer channels.
valid_ch_indices (numpy.ndarray, shape(ch_cnt,)) – Binary list identifying channels as valid/invalid.
- Returns:
cov – Covariance
- Return type:
numpy.ndarray, shape(meg_ch_cnt, meg_ch_cnt)
- src_rec.sen_cov._calc_sensor_noise_cov(raw_file, method=None, method_params=None, epoch_sz_s=0.2)#
Calculates the sensor noise covariance
- Parameters:
file_path (string) – The (empty room) file to use for sensor noise covariance calculations. Important: Evaluate a number of different files to identify a good example.
cov_path (string) – Path to a the covariance file. If none exists, the covariance will be saved in this location.
method (string) – Method to be employed, either “empirically”, “shrinkage”, or “factor_analysis” (default: shrinkage).
epoch_sz_s (0.2) – Size of individual epochs, scaled in s.
- Returns:
cov (numpy.ndarray, shape(meg_ch_cnt, meg_ch_cnt)) – Covariance
ch_names (list, string) – Channel names.