Imaginary coherence#

This function may be called for data in the time domain, the frequency domain, or (if correctly aligned) in the complex coherency domain.

Note

Use the following function for time domain data.

feat.sfc.ic_td(data_1, data_2, fs, nperseg, nfft)#

Calculate the imaginary coherency between two signals. Assumes data_1 and data_2 to be from time domain.

Parameters:
  • data_1 (np.ndarray or list, len(n_samples)) – First dataset from the complex frequency domain; vector of samples.

  • data_2 (np.ndarray or list, len(n_samples)) – Second dataset from the complex frequency domain; vector of samples.

  • fs (float) – Sampling frequency

  • nperseg (float) – Size of individual segments in fft.

  • nfft (float) – FFT window size.

Returns:

  • binslist

    Frequency bins.

  • connlist

    Coherence values of the respective frequency bins measured via imaginary coherence.

Return type:

tuple of (list, list)

Note

Use the following function for frequency domain data.

feat.sfc.ic_fd(data_1, data_2)#

Calculate the imaginary coherency between two signals. Assumes data_1 and data_2 to be from the complex frequency domain.

Parameters:
  • data_1 (np.ndarray or list, len(n_samples)) – First dataset from the complex frequency domain; vector of samples.

  • data_2 (np.ndarray or list, len(n_samples)) – Second dataset from the complex frequency domain; vector of samples.

Returns:

Connectivity between data_1 and data_2 measured using imaginary coherence.

Return type:

list

Note

Use the following function for complex coherency domain data.

feat.sfc.ic_cc(data)#

Calculate the imaginary coherency between two signals. Assumes data_1 and data_2 to be from the complex frequency domain.

Parameters:

data (list) – Complex coherency values; vector of samples.

Returns:

Connectivity estimated based on the provided complex coherency measured via the imaginary coherence.

Return type:

list

The following code example shows how to apply imaginary coherence to measure sfc.

import numpy as np

import matplotlib.pyplot as plt

import finnpy.feat.sfc as sfc  # @UnresolvedImport
import finnpy.demo.functionality.sfc.gen_demo_data as gen_demo_data  # @UnresolvedImport

def main():
   minimum_frequency = 13
   maximum_frequency = 27

   frequency_sampling = 3000
   time_s = 120
   offset_s = 1
   signal_length_samples = int(frequency_sampling * (time_s + offset_s * 2))
   data = gen_demo_data.gen_wn_signal(minimum_frequency, maximum_frequency, frequency_sampling, signal_length_samples)
   frequency_peak = (maximum_frequency + minimum_frequency)/2

   noise_weight = 0.2

   phase_min = -90
   phase_max = 270
   phase_step = 4

   frequency_target = 20
   nperseg = frequency_sampling
   nfft = frequency_sampling

   #Generate data
   offset = int(np.ceil(frequency_sampling/frequency_peak))
   loc_data = data[offset:]
   signal_1 = np.zeros((loc_data).shape)
   signal_1 += loc_data
   signal_1 += np.random.random(len(loc_data)) * noise_weight

   conn_vals = list()
   fig = plt.figure()
   for phase_shift in np.arange(phase_min, phase_max, phase_step):
      loc_offset = offset - int(np.ceil(frequency_sampling/frequency_peak * phase_shift/360))
      loc_data = data[(loc_offset):]
      signal_2 = np.zeros(loc_data.shape)
      signal_2 += loc_data
      signal_2 += np.random.random(len(loc_data)) * noise_weight

      plt.cla()
      plt.plot(signal_1[:500], color = "blue")
      plt.plot(signal_2[:500], color = "red")
      plt.title("Signal shifted by %2.f degree around %2.2fHz" % (float(phase_shift), float(frequency_peak)))
      plt.show(block = False)
      plt.pause(0.001)

      conn_value_td = calc_from_time_domain(signal_1, signal_2, frequency_sampling, nperseg, nfft, frequency_target)
      conn_value_fd = calc_from_time_domain(signal_1, signal_2, frequency_sampling, nperseg, nfft, frequency_target)
      conn_value_coh = calc_from_time_domain(signal_1, signal_2, frequency_sampling, nperseg, nfft, frequency_target)

      if (np.isnan(conn_value_td) == False and np.isnan(conn_value_fd) == False and np.isnan(conn_value_coh) == False):
         if (conn_value_td != conn_value_fd or conn_value_td != conn_value_coh):
            print("Error")

      conn_vals.append(conn_value_td if (np.isnan(conn_value_td) == False) else 0)

   plt.close(fig)

   plt.figure()
   plt.scatter(np.arange(phase_min, phase_max, phase_step), conn_vals)
   plt.show(block = True)


def calc_from_time_domain(signal_1, signal_2, frequency_sampling, nperseg, nfft, frequency_target):
   return sfc.ic_td(signal_1, signal_2, frequency_sampling, nperseg, nfft)[1][frequency_target]

def calc_from_frequency_domain(signal_1, signal_2, frequency_sampling, nperseg, nfft, frequency_target):
   seg_data_X = sfc._segment_data(signal_1, nperseg, pad_type = "zero")  # pylint: disable=protected-access
   seg_data_Y = sfc._segment_data(signal_2, nperseg, pad_type = "zero")  # pylint: disable=protected-access

   (bins, fd_signal_1) = sfc._calc_FFT(seg_data_X, frequency_sampling, nfft, window = "hanning")  # pylint: disable=protected-access
   (_,    fd_signal_2) = sfc._calc_FFT(seg_data_Y, frequency_sampling, nfft, window = "hanning")  # pylint: disable=protected-access

   return sfc.ic_fd(fd_signal_1, fd_signal_2)[1][[np.argmin(np.abs(bins - frequency_target))]]

def calc_from_coherency_domain(signal_1, signal_2, frequency_sampling, nperseg, nfft, frequency_target):
   (bins, coh) = sfc.cc_td(signal_1, signal_2, nperseg, "zero", frequency_sampling, nfft, "hanning")

   return sfc.ic_cc(coh)[np.argmin(np.abs(bins - frequency_target))]


main()

The maximum score of imaginary coherence is dependent on the phase shift between two signals, hence it can only be interpreted relatively and never absolutely.

../_images/im.png